COMPLEX ANALYSIS FINAL EXAMINATION

Attempt all questions. Total Marks: 40. If you use a result proved in class then it is enough to just quote it. This exam is from 10 am to 12:30 pm (two and a half hours). You will also get some time before and after the examination for downloading and uploading respectively.

- (1) Does there exist an analytic function f on the open ball B(0;2) (with centre the origin and of radius 2) which satisfies $f(\frac{1}{n}) = \frac{1}{2^n}$ for all $n \in \mathbb{N}$? Justify your answer. (6 marks)
- (2) For which positive integers n does there exist a primitive of the function $\frac{\sin(z)}{z^n}$ on $\mathbb{C} \setminus \{0\}$? Write down the Laurent series expansion centered at the origin, of any such primitive. (7 marks)
- (3) Let $f(z) = (z a_1)(z a_2) \dots (z a_{2n-1})(z a_{2n})$ where a_1, \dots, a_{2n} are distinct complex numbers. Let D be a domain in \mathbb{C} satisfying a_{2k-1} and a_{2k} belong to a connected subset C_k of $\mathbb{C} \setminus D$ for each $1 \leq k \leq n$. Show that there exists a branch of the square root of f in D. (8 marks)
- (4) Let B = B(0; 1) be the open unit ball $\{|z| < 1\}, \partial B = \{|z| = 1\}$ be the boundary of B, and $\overline{B} = \{|z| \le 1\}$ be the closure of B. Let $f : \overline{B} \to \mathbb{C}$ be a non-constant continuous function which is analytic when restricted to B, and suppose that |f(z)| = 1 for all $z \in \partial B$. Show that f has a finite non-zero number of zeroes in B. Conclude that f is of the form

$$f = c \prod_{k=1}^{n} \left(\frac{z - a_k}{1 - \bar{a_k} z} \right)^{m_k}$$

where a_1, \ldots, a_n are distinct points of B, m_1, \ldots, m_n are positive integers, and c is a constant with |c| = 1. (Hint: Note that, if b is a complex number with |b| < 1, then $\frac{z-b}{1-bz} \leq 1$ if and only if $|z| \leq 1$, and equality holds if and only if |z| = 1) (9 marks)

(5) Let γ_n be the (closed) rectangular path $[n + \frac{1}{2} + ni, -n - \frac{1}{2} + ni, -n - \frac{1}{2} - ni, n + \frac{1}{2} - ni, n + \frac{1}{2} + ni]$, and consider the integral $\int_{\gamma_n} \pi(z+a)^{-2} \cot(\pi z) dz$ where *a* is not an integer. Show that

$$\lim_{n \to \infty} \int_{\gamma_n} \pi (z+a)^{-2} \cot(\pi z) dz = 0$$

Deduce that

$$\frac{\pi^2}{\sin^2(\pi a)} = \sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^2}$$

(Hint: For z = x + iy, use $|\cos(z)|^2 = \cos^2(x) + \sinh^2(y)$, $|\sin(z)|^2 = \sin^2(x) + \sinh^2(y)$, and show that $|\cot(\pi z)| \le 2$ for any point z on the curve γ_n , when n is sufficiently large). (10 marks)